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Abstract-

This paper deals with the documentation for the extraction of textual areas of a document image using globally
matched wavwelet filters. Document Image Segmentation, Feature Extraction and Image components classification
form a fundamental problem in many applications of multi-dimensional signal proce ssing. We discusse d the Wave let
Techniques like Continuous Wavelet Transform (CWT), Discre te Cosine Transform (DCT), Discre te Waw le t Transform
(DWT) and calculating the performance metrics imple menting with text images.
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1. INTRODUCTION
Document Image Segmentation (DIS)

procedures partition an image into its constituent
parts or objects. In general, segmentation is one
of the most difficult tasks in digital image
processing. A rugged segmentation procedure
brings the process a long way toward successful
solution of imaging problems that require objects
to be identified individually. On the other hand,
weak or erratic segmentation algorithms almost
always guarantee eventual failure. The more
accurate the segmentation, the more likely
recognition is to succeed. The wavelet transform
provides a compact description of document
images and it is very helpful in description of
edges and lines that are highly localized. 2-D
wavelet decomposition is used for document
images. The process of texture segmentation
using Gabor filters involves proper design of a
filter bank tuned to different spatial-frequencies
and orientations to cover the spatial-frequency
space; decomposing the document image into a
number of filtered documentimages; extraction of
features from the filtered document images; and
the clustering of pixels in the feature space to
produce the segmented document image. This
paper deals with segmentation of document
image based on wavelet transform method. The
experimental results are obtained for wavelet
transform using Discrete Cosine Transform
coefficients & DWT, Inverse DWT and creating
Gabor filter for document images [1].

The wavelettransform plays anextremely
crucial role in image compression. For image
compression applications, wavelet transform is a
more suitable technique compared to the Fourer
transform. Fourer transform is not practical for
computing spectral information because it
requires all previous and future information
about the signal over the entire time domain and
it cannot obsewe frequencies varying with time
because the resulting function after Fourier

transform is a function independent of time.
Wavelet transforms are based on wavelets which
are varying frequency, and the improvements that
can be made to enhance the performance of the
wavelet transforms [4]. Background information
such as time-frequency  analysis and
multiresolution analysis. The mid-portion of the
paperfocuses on the wavelet transforms and their
derivations for both one dimensional and two
dimensional cases. Improved algorithms for the
wavelet transforms including the fast wavelet
transform, lifting scheme, and reversible integer
wavelet transform. Lifting-based discrete wavelet
many advantages
convolution-based transform and
combined with the concept of integer-to-integer
transform in order to enhance the performance of
lossless image compression.

The discrete wavelet transform (DWT) is a
linear transformation that operates on a data
vector whose length is an integer power of two,

transform has over the

it can be

transforming itinto a numerically different ve ctor
of the same length. It is a tool that separates data
into different frequency components, and then
studies each component with resolution matched
to its scale. DWT is computed with a cascade of
filtering followed by a factor 2 sub sampling
(Fig.1).

Discrete Wavelet transform (DWT) is a
mathematical tool for hierarchically decomposing
an image. This transform is based on wavelets
which are of varying frequency. The transform of
a signal is just another way of representing the
signal; it does notchange the information content
present in the signal. The Discrete wavelet
transform provides a time-frequency
representation of the signal. DWT is the popular
technique which is used for image watermarking
and image compression applications with
excellent visual quality of the processed image.

SHRI SHIVAJI SCIENCE COLLEGE, NAGPUR

803 ICRTS-2017



IJRBAT, Spedal Issue (2), VoV, July 2017

ISSN No. 2347-517X (Online)

The
transform in image processing is to decompose
the image into sub-image of different spatial
domain and independent frequency sub-bands.
After the coverimage has been DWT transformed,
it is decomposed into four frequency parts (LL,
LH, HL, and HH) as shown in Fig. 1. LL is the low
frequency sub-band which contains the
approximation of the original image. HL
represents the high frequency sub-band which
contains the horizontal details of the image. LH
represents the high frequency sub-band which

basic idea of discrete wavelet

contains the vertical details of the image. HH
represents the high frequency sub band of the
diagonal image [4].

x—— L b2 L L2 b
H b2 HH\LQ}—NJ:

Fig 1. DWT tree
H and L denotes high and low-pass filters

respectively, | 2 denotes subsampling. Outputs of
this filters are given by equations (1) and (2).
a;.[pl= Y lln-2pla,[n]

f=—ca

d,,[p]= Eh[n =2pla,[n]

f=—se

Elements ajare used for next step (scale)
of the transform and elements dj, called wavelet
coefficients, determine output of the transform.
l[n] and hfn] are coefficients of low and high-pas
filters respectively One can assume that on scale
j*+1 there is only half from number of a and d
elements on scale j. This causes that DWT can be
done until only two a; elements remain in the
analyzed signal. These elements are called scaling
function coefficients.

The wavelet transform has similar
properties to Fourier transform as a
mathematical technique for document image
analysis, the basic differe nce be tween both is that
wavelets are localized in both time and frequency,
whereas the standard Fourer transform is only
localized in frequency. When digital document
images are viewed or processed at multiple
resolutions, the discrete wavelet transform (DWT)
is the mathematical tool of choice. In addition to
being an efficient, highly intuitive framework for
the representation and storage of multiresolution
document images, the DWT provides powerful
insight into a document image spatial and
frequency characteristics. The wavelet transform
is important to provide a compact description of
document images that are limited in time and it

is very helpful in description of edge and line that
are highly localized . 2-D wavele t decomposition is
use for document images. This 2-D wavelet
transform requires two wavelets such as yl(x, y)
and y2(x,y). At a particular scale s we have,

2)

v (x, y)

i=1..2

. [
o
By applyingeach one f(x,y), at a scale s=2jwe will
have a component

|

Wi fi(x,y) = (f= W W12 .

Then the original signal f(x, y) can be represented
by the 2-D wavelet transform in terms of the two
dual wavelets §1(x, y) and §2(x, y) [2].

flry) = Z((W)F=Es)(ey) + (W) &) ) (v

And it is required a scaling function @(x, y) for
build a multistage representation, corresponding
component ata scale 2j is:

3 fix.y) = (£ * ) x.,y)

These  wavelet measure  function
variations along different directions. We may
interpret the component SJf(x,y) as a smoothed
version of f{x, y) and the components forj=1...J,
as the document image details lost by smoothing
going from S20f(x,y) to Soif(x.y) [3-4].

1.1 Image compression

Even though the wavelet transforms have
been widely used in image coding since the late
80s, they only gained their notoriety in the field
by the adoption of the first wavelet-based
compression standard scheme, known as the FBI
fingerprint compression standard Bradley, et al,,
1993). Recently, what did Sweldens state in
(Sweldens, 1996) as a need of standardizing a
wavelet-based compression scheme under the
header “problems not sufficiently explored with
wavelets”, has seen the day, by the adoption of
the JPEG2000 new compression standard
(Ebrahimi et al., 2002). The block diagram of the
JPEG2000 standard does not really differ from
the JPEG standard one. The discrete wavelet
transform, which replaces the DCT, is applied
first to the source image. The transformed
coefficients are then quantized. Finally, the
output coefficients from the quantizer are
encoded (using either Huffman coding or
arithmetic coding techniques) to generate the
compressed image (Smith, 2003; Do & Vetterli,
2005; Hankerson et al, 2005; Xiong &
Ramchandran, 2005; Chappelier & Guillemot,
2006; Nai-Xiang et al., 2006; Raviraj &
Sanavullah, 2007; Mallat, 2009; Oppenheim &
Schafer, 2010). To recover the original image the
inverse process is applied. Figure 21 shows the
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basic JPEG2000 Encoding Scheme (Ebrahimi et
al., 2002) [5].

e | DWT I—-{ Quantisation I—"' Encoding —
Image _1

Recovered IDWT
Tmage

De-quantisation

e
=

Decoding I»

Fig 2. Wavelet-based e ncoding scheme

1.2 Image denoising

Image manipulation, includes a wide
range of operations like digitizing, copying,
transmitting, displaying etc. Unfortunately, such
manipulations generally degrade the image
quality by spanning many types of noise. Hence,
to recover the original structure of the image, the
undesired added noise needs to be localized and
then removed [6]. Traditionally, image denoising
or image enhancement is performed using either
linear filtering or non-linear filtering. Linear
filtering is achieved either by using spatial
techniques, as low pass filtering, or frequency
techniques, as the Fast Fourier Transform (FFT).
On the other hand, statistical and morphological
filters are typical examples of non-linear filtering.
However, the filtering techniques lead in some
cases to baneful effects when applied
indiscriminately to an image. In fact, if it is not
the whole image that is blurred, some of its

important features (e.g. edges) are baneful effects
when applied indiscriminately to an image. In
fact, if it is not the whole image that is blurred,
some of its important features (e.g. edges) are, a
solution to overcome this problem has been
introduced by Denoho and Johnstone (1994).
Instead of exploiting either linear or non-linear
filtering, their technique consists of using the
DWT followed by a thresholding operation. This
method exploits the energy compaction ability of
the wavelet transform to separate the image from
the added noise. The role of the threshold is to
eliminate the noise present in the image. Finally,
the enhanced “denoised” image is recovered by
applying the inverse DWT [7]. This method is also
known as the waveletshrinkage denoising, and is
classified as a nonlinear processing technique
due to the thresholding operation involved in the
process as illustrated in Fig. 3.

De-naised

Image

Noisy . Nonlinear .
. DT ¥ [DIT —»
Image Operator
Fig. 3 Wavelet-based denoising system
Another method, which achieves better

performances when compared to the previous
one, consists of using an undecimated version of
the DWT (Donoho & Johnstone, 1995). This
choice is motivated by the fact that originally, the
DWT is not a shift-invariant transform, and as
such, visual artifacts can be spanned by the
transform. This like-noise is more apparent
around discontinuities in the image. However, in
this particular case the inverse transform is not
unique.As a solution, itis appropriate to take the
average of the possible reconstruction. The
computational complexity of this approach is
O(nlog(n)) [8].
1.3 Continuous Wavelet Transform
Continuous Wavelet Transform (CWT) is
an imple mentation ofthe wavelet transform using
arbitrary scales and almost arbitrary wavelets.

The wavelets used are not orthogonal and the
data obtained by this transform are highly
correlated. For the discrete time series we can use
this transform as well, with the limitation that the
smallest wavelet translations mustbe equal to the
data sampling. This is sometimes called Discrete
Time Continuous Wavelet Transform (DT-CWT)
and it is the mostused way of computing CWT in
real applications

In principle the continuous wavelet
transform works by using directly the definition
of the wavelet transform, i.e. we are computing a
convolution of the signal with the scaled wavelet.
For each scale we obtain by this way an array of
the same length N as the signal has. By using M
arbitrarily chosen scales we obtain a field NxM
that re presents the time-frequency plane directly.
The algorithm used for this computation can be
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based on a direct convolution or on a convolution
by means of multiplication in Fourier space (this
is sometimes called Fast Wavelet Transform).

Different ways to introduce the wavelet
transform can be envisaged (Starck et. al., 1998).
However, the traditional method to achieve this
goal remains the use of the Fourier theory (more
precisely, STFT). The Fourier theory uses sine and
cosine as basic functions to analyses a particular
signal. Due to the infinite expansion of the basic
functions, the FT is more approprate for signals
of the same nature, which generally are assumed
to be periodic. Hence, the Fourier theory is purely
a frequency domain approach, which means that
a particular signal f(t) can be represented by the
frequency spectrum F(w), as follows:

F(o)= j'_*: f(tye ™ dt

The original signal can be recovered,
under certain conditions, by the inverse Fourier
Transform as follows:

1 a0 R
fiy=—| F(w)e'"do

20 d—
Obviously, discrete-time versions of both direct
and inverse forms of the Fourier transform are
possible
1.4 Discrete Cosine Transform

A discrete cosine transform (DCT)
expresses a finite sequence of data points in
terms of a sum of cosine functions oscillating at
different frequencies. DCTs are important to
numerous applications in
engineering, from lossy compression of audio (e.g.
MP3) and images (e.g. JPEG) (where small high-
frequency components can be discarded), to
spectral methods for the numerical solution of
partial differential equations. The use of cosine
rather than sine functions is critical for
compression, since it turns out (as described
below) that fewer cosine functions are needed to
approximate a typical signal, whereas for

science and

differential equations the cosines express a
particular choice of boundary conditions.

In particular, a DCT is a Fourier-related
transform similar to the discrete Fourer
transform (DFT), but using only real numbers.
The DCT are generally related to Fourier series
coefficients of a periodically and symmetrically
extended sequence whereas DFT are related to
Fourier series coefficients of a periodically
extended sequence. DCT are equivalent to DFTs
of roughly twice the length, operating on realdata
with even symmetry (since the Fourier transform
of a real and even function is real and even),
whereas in some variants the input and/or

output data are shifted by half a sample. There
are eight standard DCT variants, of which fourare
common.

The most common variant of discrete
cosine transform is the type-II DCT, which is often
called simply "the DCT its inverse, the type-III
DCT, is correspondingly often called simply the
inverse DCT or the IDCT Two related transforms
are the discrete sine transform (DST), which is
equivalent to a DFT ofrealand odd functions, and
the modified discrete cosine transform (MDCT),
which is based on a DCT of overlapping data.
Multidimensional DCTs (MD DCTs) are developed
to extend the concept of DCT on MD Signals.
There are several algorithms to compute MD DCT.
A new variety offastalgorithms are also developed
to reduce the computational complexity of
implementing DCT.

JPEG stands for the Joint Photographic
Experts Group, a standards committee that had
its origins within the Intemational Standard
Organization (ISO).JPEG provides a compression
method that is capable of compressing
continuous-tone image data with a pixel depth of
6 to 24 bits JPEG is primarily a lossy method of
compression [9]. JPEG was designed specifically
to discard information that the human eye cannot
easily see. Slight changes in color are not
perceived well by the human eye, while slight
changes in intensity (light and dark) are.
Therefore JPEG's lossy encoding tend s to be more
frugal with the grayscale part of an image and to
be more frivolous with the color.DCT separates
images into parts of different frequencies where
less important frequencies are discarded through
quantization and important frequencies are used
to retrieve the image during decompression.
Compared to other input dependent transforms,
DCT has many advantages: (1) It has been
implemented in single integrated circuit; (2) It has
the ability to pack most information in fewest
coefficients; (3) It minimizes the block like
appearance called blocking artifact that results
when boundaries between sub-images become
visible. The forward 2D_DCT transformation is
given by (1): C(u,v)=D(u)D(v)

-1 L I —=

= LS

u

= LI

flx,y)cos[(2x+1)urn/2N]cos|[(2 y+1)vrt/2N])

Where u, v=0, 1, 2, 3,---N-1 The inverse
2D-DCT transformation is given by the following
equation

2t DY D(u)D(W)
fx,y)= fix.y)
cos[(2x+1)urt/2N]|cos[(2y+1)vit/2N]
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where, D(u)=(1 /N) A1 /2 for u=0
D(v)=2(/N)*"1/2 foru=1,2,3....... ,(N-1) [10-11].
1.5 Discrete Wavelet Transform

In this section, we specify the framework
in which the algorithms will be derived. We also
briefly motivate the need for further reduction of
complexity in a DWT. We assume real data and
filters (of finite length), but the results extend
easily to the complex-valued case. It can be
shown that the FFT-based algorithms described
next require about twice as many multiplications
in the complex case than in the real case, a
property shared by FFT algorithms [SI, .However,
a straightforward filter bank implementation of
the DWT or the “shortlength” algorithms
described in Section 111-E require about three
times as many multiplications in the complex
case, assuming that a complex multiplication is
carried out with three real multiplications and
additions.

In our derivations, we do not take
advantage of possible constraints (such as
orthogonality), even though these can be used to
further reduce the complexity. The resulting
algorithms therefore apply in general. The
derivation of fast algorithms is primarily based on
the reduction of computational complexity. Here,
“complexity” means the number of real
multiplications and real additions required by the
algorithm, per input point. In the DWT case, this
is also the complexity per output point since the
DWT is critically sampled of course, complexity is
not the only relevant critedon. For example,
regular computational structures (i.e., repeated
application of identical computational cells) are
also important for implementation issues.

However, since most algorithms
considered in this paper have regular structures,
a criterion based on complexity is fairly
instructive for comparing the various DWT
algorithms. We have chosen the total number of
operations (multiplications+ additions) as the
criterion. With today’s technology, this criterion is
generally more useful than the sole number of
multiplications at least for general purpose
computers (another choice would have been to
count the number of  multiplication-
accumulations). Due to the lack ofspace, we shall
not derive algorithms explicitly for the inverse
DWT. However, a IDWT algorithm is easily
deduced from a DWT algorithm as follows: If the
wavelets form an orthogonal basis, the exact
inverse algorithm is obtained by taking the
Hemmitian transpose of the DWT flow graph.
Otherwise, only the structure of the inverse
algorithm is found that way, the filter coe flicients
g[n ] ,h[n] have to be replaced by g n ], h[n |,

respectively. In both cases, any DWT algorithm,
once transposed, can be used to implement an
IDWT. It can be shown that this implies that the
DWT and IDWT require exactly the same number
of operations (multiplications and additions) per
point. The filters involved in the computation of
the DWT (cf usually have equal length L. This is
true in the orthogonal case, while in the
biorthogonal case the filter lengths may differ by
a few samples only.

Although an implementation of “Morlet-
type” wavelets used in uses a short low-pass
filter g [n]Jand a long high-pass filter h [n], we
restrict in this section to the case of equal filter
lengths for simplicity. If lengths differ, one can
pad the filter coeflficients with zeros. Section 111-
G discusses the case when filters are of very
different lengths. It is important to note that the
standard DWT algorithm, imple mente d directly as
a filter bank, is already “fast.” This fact was
mentioned by Ramstad and Saramaki in the
context of octave-band filter banks. What makes
the DWT “fast” is the decomposition of the
computation into elementary cells and the
subsampling operations (called decimations)
which occur at each stage. More precisely, the
operations required by one elementary cell at the
jt octave are counted as follows. There are two
filters of equal length L involved. The “wavelet
filtering” by h [n]directly provides the wavelet
coefficients at the considered octave, while
filtering by g[n| and decimating is used to enter
the next cell. A directimplementation of the filters
g [n]and h[n] followed by decimation requires 2 L
multiplications and 2(L- 1) additions forevery set
of two inputs. That is, the complexity per input
point for each elmentary cell is L
mults/point/celland L - 1 adds/point/cell. Since
the cell at the jt octave has input subsampled by
2J-’, the total complexity required by a filter bank
implementation of the DWT on J octaves is (1 +
1/2 + % + ..+ 1/27) = 2(1 - 2-”) times the
complexity, that is
2 L(1-2-")mults/pointand
2(L-1)(1-2-")adds/point.

The DWT is therefore roughly equivalent,
in terms of complexity, to one filter of length 2 L.
A remarkable factis that the complexity re mains
bounded as the number of octaves, J, increases.
We remark, in passing, that a naive computation
of the DWT would implement exactly as written,
with precomputed discrete wavelets hjjn | .This
does not take advantage of the dilation property
of wavelets (9), and therefore is noteffective. Since
the length ofhj[nl]is (L-1)2-1)f 1 ,one
would have, at the jth octave, (L- 1)(2°-1) + 1 real
multiplications and (L - 1)(2’ - 1 ) real additions
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for each setof 2 jinputs. For a computation on J
octaves (j=1;..,J)thisgivesJ (L-1)+1
mults/point and J (L - 1 ) adds/point.

This complexity increases linearly with J,
while that of the “filter bank” DWT algorithm is
bounded as J increases. The use of the filter bank
structure in the DWT computation thus reduces
the complexity from JL to L. This is a hug gain;
the DWT already deserves the term “fast” [12].

EXPERIMENTAL RESULTS
In this paper we calculate the metrics are as
follows.
2.1 Bit Per Pixel (BPP)

The numberofbits of information stored per
pixel of an image or displayed by a graphics
adapter. The more bits there are, the more colors
can be represented, but the more memory is
required to store or display the image

2.2 Compression Ratio (CR)

Compression ratio indicates the efficiency of
compression technique, more the compression
ratio, less memory space required. The
compression ratio is equal to the size of the
original image divided by the size of the
compressed image. The compression ratio
achieved usually point out the picture quality.
Generally, the higher the compression ratio, the
poorer the quality of the resulting image.

2.3 PSNR(Peak Signal Noise Ratio)

PSNRvalue is used to measure the difference
between a reconstructed image and original
image. In general, the larger PSNR value, the
better is image quality, so there is an inverse
relationship of MSE and PSNR. There is an
inverse relationship between MSE and PSNR.
Hence, the larger PSNR value gives the better
image quality.

Comgressed image

Fig. 4 Original Document Image Original & Compressed

Origenat image

Compressed image

250

Fig. 5 Original Document Image Original & Compressed

¥

‘ Load the image ‘

Weompress(jcompress the image

¥
Calculate CR, BPP and PSNR to zet better

el

¥
Result
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rruance of crand bpp

OMMBLWRY

:Iﬁ

Comparision of cr and bpp using text
images

Graph 1: Comparison of Compression (cr) and Bit-Per-Pixel (bpp) using text images
The above graph bit per pixel (bpp) ratio are constant at point zero and some little
more increase at point d image 9 increase at point 0.5 .compress ratio of text images are
increased at point d-image 8 atlevel 5.5.s0 thatit’s a high resolution image.

Images lompression Ratio(cr) Bit Per Pxel (bpp)
d-imagel 0.1370 0.0110
d-image2 0.0216 0.0052
d-image3 0.1370 0.0110
d-image4 0.0399 0.0032
d-image5 0.0342 0.0027
d-image6 0.0933 0.0075
d-image7 0.1534 0.0123
d-image8 0.1133 0.0091
d-image9 5.4794 0.4384
d-imagel0 0.8985 0.2156
2. CONCLUSION based on discrete wavelet transform is

In this paper, we have described
document images performed by using
wavelet transforms. To solve this problem,
wavelet transforms are used for increasing
accuracy. Resolution reduction by wavelet is
dependent on amount of noise in the
document image and also the desired target
size.

In the paper, image compression
techniques using DCT and DWT were
implemented. DCT is used for
transformation in JPEG standard. DCT
performs efficiently at medium bit rates.
DWT provides high quality compression at
low bit rates. The use of DWT basis functions
or wavelet filters produces blurring near
edges in images. DWT performs better than
DCT in the context that it avoids blocking
artifacts which degrade reconstructed
images. However DWT provides lower quality
than JPEG at low compression rates.

DWT requires longer compression
time. A new image compression scheme

proposed in this research which provides
sufficient high compression ratios with no
appreciable degradation of image quality.
The effectiveness and robustness of this
approach has been justified using a set of
real images. Wavelets are better suited to
time-limited data and wavelet based
compression technique maintains better
image quality by reducing errors.
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